## Spin-CP studies of the new boson for Snowmass

Study kinematic distributions of X->VV->4 fermions to extract tensor amplitude structure of production and decay of the new boson.

using JHU generator and MELA method:

- http://www.pha.jhu.edu/spin/
- Phys. Rev. D 81, 075022 (2010)
- Phys. Rev. D 86, 095031 (2012)

Evaluate the sensitivity at future pp and (possibly) e+e- colliders for:

(gen-level studies with smearing+acceptance cuts)

☐ CP mixing studies assuming spin 0

$$A(X_{J=0} \to V_1 V_2) = v^{-1} \left( g_1 m_V^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

with present LHC statistics pure 0- ruled out (g<sub>i</sub>=0 for i≠4) -> next steps

- test mixed hypotheses with more than one  $g_i \neq 0$  (with interference included)
- fit directly the fractions and phases of g<sub>i</sub> from kinematic distributions Eg: 0.08 precision expected on g<sub>4</sub> fraction with 300 fb<sup>-1</sup> at LHC
- Exotic spin scenarios (similar, more complex, formula as above available in cited papers for spin>0) most basic (minimal couplings) scenarios under test at LHC -> next steps
  - test wide range of scenarios (identify the ones with kinematics very similar to 0+ SM case)
  - more model independent approach: production-independent spin tests
    mixing-independent spin tests